Some New Local Fractional Newton-type Inequalities

Authors

DOI:

https://doi.org/10.63286/jima.008

Keywords:

Fractal sets, Newton-type inequalities , generalized Hölder inequality, generalized power mean inequality

Abstract

In this study, we present a novel identity based on local fractional integrals, which forms the basis for deriving a series of new Newton-type inequalities for functions whose local fractional derivatives demonstrate generalized convexity. Additionally, we establish further results by employing the generalized Hölder inequality, the generalized power mean inequality, and an improved version of the generalized power mean inequality, along with another result for local fractional differentiable concave functions. To substantiate our theoretical findings, we include several practical applications that highlight the effectiveness and applicability of the derived results.

References

[1] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, Vol. 187, Academic Press, Boston, MA, 1992.

[2] B. Meftah, A. Lakhdari, and D. C. Benchettah, Some New Hermite-Hadamard Type Integral Inequalities for Twice Differentiable s-Convex Functions, Computers & Mathematics with Applications, 33(3), 2023, 330–353.

DOI: 10.1007/s10598-023-09576-3

[3] M. A. Noor, K. I. Noor, and S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Mathematical Journal, 40(2), 2018, 239–250.

DOI: 10.5831/HMJ.2018.40.2.239

[4] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, and H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal and Fractional, 6(3), 2022, 175.

DOI: 10.3390/fractalfract6030175

[5] N. Laribi and B. Meftah, 3/8-Simpson type inequalities for differentiable s-convex functions, Jordan Journal of Mathematics and Statistics, 16(1), 2023, 79–98.

DOI: 10.47013/16.1.6

[6] M. A. Ali, C. S. Goodrich, and H. Budak, Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals, Journal of Inequalities and Applications, 2023, Art. 49, 1–17.

DOI: 10.1186/s13660-023-02953-x

[7] H. Budak, S. Erden, and M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Mathematical Methods in the Applied Sciences, 44(1), 2021, 378–390.

DOI: 10.1002/mma.6742

[8] S. I. Butt, I. Javed, P. Agarwal, and J. J. Nieto, Newton-Simpson-type inequalities via majorization, Journal of Inequalities and Applications, 2023, Art. 16, 1–34.

DOI: 10.1186/s13660-023-02918-0

[9] C. Ünal, F. Hezenci, and H. Budak, Conformable fractional Newton-type inequalities with respect to differentiable convex functions, Journal of Inequalities and Applications, 2023, Art. 85, 1–19.

DOI: 10.1186/s13660-023-02996-0

[10] L. Zhang, Y. Peng, and T. S. Du, On multiplicative Hermite-Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, Journal of Mathematical Analysis and Applications, 534(2), 2024, 128117, 1–39.

DOI: 10.1016/j.jmaa.2024.128117

[11] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.

[12] Y. J. Yang, D. Baleanu, and X.-J. Yang, Analysis of fractal wave equations by local fractional Fourier series method, Advances in Mathematical Physics, 2013, Art. 632309, 1–6.

DOI: 10.1155/2013/632309

[13] F. Gao, W. P. Zhong, and X. M. Shen, Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral, Advanced Materials Research, 461, 2012, 306–310.

DOI: 10.4028/www.scientific.net/AMR.461.306

[14] A. M. Yang, Z. S. Chen, H. M. Srivastava, and X. J. Yang, Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators, Abstract and Applied Analysis, 2013, Art. 259125, 1–6.

DOI: 10.1155/2013/259125

[15] G.-S. Chen, Generalizations of Hölder's and some related integral inequalities on fractal space, Journal of Function Spaces and Applications, 2013, Art. 198405, 1–9.

DOI: 10.1155/2013/198405

[16] H. Mo, X. Sui, and D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied Analysis, 2014, Art. 636751, 1–7.

DOI: 10.1155/2014/636751

[17] M. Z. Sarikaya, H. Budak, and S. Erden, On new inequalities of Simpson's type for generalized convex functions, Korean Journal of Mathematics, 27(2), 2019, 279–295.

[18] Y. Yu and T. Du, Certain error bounds on the Bullen type integral inequalities in the framework of fractal spaces, Journal of Nonlinear Functional Analysis, 2022(24), 2022, 1–20.

DOI: 10.23952/jnfa.2022.24

[19] F. Alsharari, R. Fakhfakh, and A. Lakhdari, On Fractal–Fractional Simpson-Type Inequalities: New Insights and Refinements of Classical Results, Mathematics, 12(24), 2024, 3886, 1–26.

DOI: 10.3390/math12243886

[20] A. Lakhdari, H. Budak, N. Mlaiki, B. Meftah, and T. Abdeljawad, New insights on fractal–fractional integral inequalities: Hermite–Hadamard and Milne estimates, Chaos, Solitons & Fractals, 193, 2025, 116087, 1–12.

DOI: 10.1016/j.chaos.2025.116087

[21] W. Saleh, B. Meftah, A. Lakhdari, and A. Kiliçman, Exploring the companion of Ostrowski's inequalities via local fractional integrals, European Journal of Pure and Applied Mathematics, 16(3), 2023, 1359–1380.

DOI: 10.29020/nybg.ejpam.v16i3.4850

[22] T. Abdeljawad, S. Rashid, Z. Hammouch, and Y.-M. Chu, Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications, Advances in Difference Equations, 2020, Art. 406, 1–27.

DOI: 10.1186/s13662-020-02865-w

[23] T. Du, H. Wang, M. A. Khan, and Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27(7), 2019, 1950117, 1–17.

DOI: 10.1142/S0218348X19501172

[24] T. Du and X. Yuan, On the parameterized fractal integral inequalities and related applications, Chaos, Solitons & Fractals, 170, 2023, 113375, 1–22.

DOI: 10.1016/j.chaos.2023.113375

[25] C. Luo, H. Wang, and T. Du, Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications, Chaos, Solitons & Fractals, 131, 2020, 109547, 1–13.

DOI: 10.1016/j.chaos.2019.109547

[26] W. Saleh, A. Lakhdari, O. Almutairi, and A. Kiliçman, Some remarks on local fractional integral inequalities involving Mittag–Leffler kernel using generalized (E, h)-convexity, Mathematics, 11(6), 2023, 1373, 1–13.

DOI: 10.3390/math11061373

[27] Y. Yu, J. Liu, and T. Du, Certain error bounds on the parameterized integral inequalities in the sense of fractal sets, Chaos, Solitons & Fractals, 161, 2022, 112328.

DOI: 10.1016/j.chaos.2022.112328

[28] S. Iftikhar, P. Kumam, and S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals, 28(3), 2020, 2050037.

DOI: 10.1142/S0218348X20500371

[29] S. H. Yu, P. O. Mohammed, Lei Xu, and T. S. Du, An improvement of the power-mean integral inequality in the frame of fractal space and certain related midpoint-type integral inequalities, Fractals, 30(4), 2022, 2250085.

DOI: 10.1142/S0218348X22500852

Downloads

Published

15.08.2025

How to Cite

Meftah, B., Benchettah, D., & Lakhdari, A. (2025). Some New Local Fractional Newton-type Inequalities. Journal of Inequalities and Mathematical Analysis, 1(2), 79–96. https://doi.org/10.63286/jima.008

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.