Exploring Hermite–Hadamard-type Inequalities via ψ-conformable Fractional Integral Operators

Authors

DOI:

https://doi.org/10.63286/jima.2025.02

Keywords:

Hermite-Hadamard type inequalities, ψ-conformable, convex function

Abstract

New Hermite-Hadamard inequalities for convex functions utilizing ψ-conformable fractional integral operators have been established. These represent extensions of many significant fractional operators, such as the Riemann-Liouville and Hadamard operators. Additionally, we establish generalized midpoint- and trapezoidal-type inequalities for these fractional integrals. These inequalities are expansions of other prior investigations.

References

[1] N. Azzouz, B. Benaissa, H. Budak, On generalized y-conformable calculus: properties and inequalities, Filomat, 38(25), 2024, 8755–8772.

DOI: 10.2298/FIL2425755A

[2] H. Budak, New Hermite–Hadamard-type inequalities for convex mappings utilizing generalized fractional integrals, Filomat, 33(8), 2019, 2329–2344.

DOI: 10.2298/FIL1908329B

[3] M. Jleli, B. Samet, On Hermite–Hadamard-type inequalities via fractional integrals of a function with respect to another function, Journal of Nonlinear Science and Applications, 9(3), 2016, 1252–1260.

DOI: 10.22436/jnsa.009.03.50

[4] H. Kara, S. Erden, H. Budak, Hermite–Hadamard, trapezoid and midpoint type inequalities involving generalized fractional integrals for convex functions, Sahand Communications in Mathematical Analysis, 20(2), 2023, 85–107.

DOI: 10.22130/scma.2022.552775.1102

[5] U. N. Katugompola, New approach generalized fractional integral, Applied Mathematics and Computation, 218(3), 2011, 860–865.

DOI: 10.1016/j.amc.2011.03.062

[6] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 2014, 65–70.

DOI: 10.1016/j.cam.2014.01.002

[7] H. Li, B. Meftah, W. Saleh, H. Xu, A. Kiliçman, A. Lakhdari, Further Hermite–Hadamard-type inequalities for fractional integrals with exponential kernels, Fractal and Fractional, 8(6), 2024, 345.

DOI: 10.3390/fractalfract8060345

[8] M. Z. Sarikaya, H. Yildirim, On Hermite–Hadamard-type inequalities for Riemann-Liouville fractional integrals, Miskolc Mathematical Notes, 17(2), 2016, 1049–1059.

DOI: 10.18514/MMN.2017.1197

[9] E. Set, J. Choi, A. Gözpinar, Hermite–Hadamard-type inequalities involving nonlocal conformable fractional integrals, Malaysian Journal of Mathematical Sciences, 15(1), 2021, 33–43.

Downloads

Published

14.04.2025

How to Cite

Azzouz, N., & Benaissa, B. (2025). Exploring Hermite–Hadamard-type Inequalities via ψ-conformable Fractional Integral Operators. Journal of Inequalities and Mathematical Analysis, 1(1), 15–27. https://doi.org/10.63286/jima.2025.02

Issue

Section

Articles