On Some Bullen-type Inequalities with the kth Power for Twice Differentiable Mappings and Applications
DOI:
https://doi.org/10.63286/jima.2025.04Keywords:
Generalized Hölder’s inequality, generalized power-mean inequality, s-convex functions, s-concave functions, special meansAbstract
We present the generalization of power-mean inequality. Further, we establish some Bullen-type inequalities with the kth power for twice differentiable mappings via s-convex functions in the first and second sense and s-concave functions. Some applications to special means of real numbers and to polygamma functions are also given.
References
[5] K. L. Tseng, S. R. Hwang and S. S. Dragomir, Fejér-type inequalities (I), Journal of Inequalities and Applications, Art. 531976, 2010, 1–7.
DOI: 10.1155/2010/531976
[7] U. S. Kirmaci, On generalizations of Hölder’s and Minkowski’s inequalities, Mathematical Sciences and Applications E-Notes, 11(4), 2023, 213–225.
DOI: 10.36753/mathenot.1150375
[8] U. S. Kirmaci and R. Dikici, On some Hermite-Hadamard type inequalities for twice differentiable mappings and applications, Tamkang Journal of Mathematics, 44(1), 2013, 41–51.
DOI: 10.5556/j.tkjm.44.2013.964
[9] U. S. Kirmaci, On new integral inequalities with applications, American Review of Mathematics and Statistics, 2(2), 2014, 107–124.
DOI: 10.15640/arms.v2n2a6
[11] Z. Liu, More on Ostrowski type inequalities for some s-convex functions in the second sense, Demonstratio Mathematica, 49(4), 2016, 398–412.
[12] J. Park, Hermite-Hadamard-like type inequalities for twice differentiable convex functions, International Journal of Mathematical Analysis, 8(59), 2014, 2909–2926.
DOI: 10.12988/ijma.2014.411377
[15] A. Fahad, S. I. Butt, B. Bayraktar, M. Anwar and Y. Wang, Some New Bullen-Type inequalities obtained via Fractional Integral Operators, Axioms, 12(7), 2023, 691, 1–26.
[16] S. Hussain and S. Mehboob, On some generalized fractional integral Bullen type inequalities with applications, Journal of Fractional Calculus and Nonlinear Systems, 2(2), 2021, 93–112.
[17] İ. İ. Işcan, T. Toplu and F. Yetgin, Some new inequalities on generalization of Hermite-Hadamard and Bullen type inequalities, applications to trapezoidal and midpoint formula, Kragujevac Journal of Mathematics, 45(4), 2021, 647–657.
[18] J. Choi and D. Cvijovic, Values of the polygamma functions at rational arguments, Journal of Physics A: Mathematical and Theoretical, 40(50), 2007, 15019–15028.
DOI: 10.1088/1751-8113/40/50/007
[19] M. Alomari, M. Darus and U. S. Kirmaci, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Mathematica Sinica, 31B(4), 2011, 1643–1652.
[20] Y. M. Chua, M. A. Khan, T. U. Khan and T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, Journal of Nonlinear Sciences and Applications, 9(6), 2016, 4305–4316.
[21] L. Chun and F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, Journal of Inequalities and Applications, 2013, Art. 451, 1–10.
DOI: 10.1186/1029-242X-2013-451
[22] S. S. Dragomir, P. Cerone and J. Roumeliotis, A new generalization of Ostrowski’s integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Applied Mathematics Letters, 13(1), 2000, 19–25.
DOI: 10.1016/S0893-9659(99)00139-1
[23] Z. Eken, S. Kemali, G. Tınaztepe and G. Adilov, The Hermite-Hadamard inequalities for p-convex functions, Hacettepe Journal of Mathematics and Statistics, 50(5), 2021, 1268–1279.
[24] F. Hezenci and H. Budak, Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals, Journal of Inequalities and Applications, 2023(1), Art. 150, 1–12.
DOI: 10.1186/s13660-023-03064-3
[25] J. Hua, B. Y. Xi and F. Qi, Inequalities of Hermite-Hadamard type involving an s-convex function with applications, Applied Mathematics and Computation, 246, 2014, 752–760.
DOI: 10.1016/j.amc.2014.08.042
[26] S. Kemali, Hermite-Hadamard type inequalities for s-convex functions in the fourth sense, Turkish Journal of Mathematics and Computer Science, 13(2), 2021, 287–293.
[27] U. S. Kirmaci and M. E. Özdemir, Some inequalities for mappings whose derivatives are bounded and applications to special means of real numbers, Applied Mathematics Letters, 17(6), 2004, 641–645.
DOI: 10.1016/S0893-9659(04)90098-5
[28] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Applied Mathematics and Computation, 147(1), 2004, 137–146.
DOI: 10.1016/S0096-3003(02)00657-4
[29] U. S. Kirmaci, M. K. Bakula, M. E. Özdemir and J. E. Pečarić, Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation, 193(1), 2007, 26–35.
DOI: 10.1016/j.amc.2007.03.030
[30] U. S. Kirmaci, Refinements of Hermite-Hadamard type inequalities for s-convex functions with applications to special means, Universal Journal of Mathematics and Applications, 4(3), 2021, 114–124.
DOI: 10.32323/ujma.953684
[31] U. S. Kirmaci, On some Cauchy type mean-value theorems with applications, Communications in Advanced Mathematical Sciences, 7, 2024, 147–156.
[32] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[33] C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications: A Contemporary Approach, CMS Books in Mathematics, Springer-Verlag, New York, 2006.
[34] J. Park, Hermite-Hadamard type inequalities for real a-star s-convex mappings, Journal of Applied Mathematics and Informatics, 28(5–6), 2010, 1507–1518.
[35] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with applications to special means and quadrature formula, Applied Mathematics Letters, 13(2), 2000, 51–55.
DOI: 10.1016/S0893-9659(99)00164-0
[36] M. Z. Sarikaya and M. E. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Mathematical Notes, 16(1), 2015, 491–501.
[37] M. Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Mathematical and Computer Modelling, 54, 2011, 2175–2182.
DOI: 10.1016/j.mcm.2011.05.026
[38] S. Sezer, The Hermite-Hadamard inequality for s-convex functions in the third sense, AIMS Mathematics, 6(7), 2021, 7719–7732.
DOI: 10.3934/math.2021448
[39] Y. Shuang and F. Qi, Some integral inequalities for s-convex functions, Gazi University Journal of Science, 31(4), 2018, 1192–1200.
[40] M. Tunç and U. S. Kirmaci, New integral inequalities for s-convex functions with applications, International Electronic Journal of Pure and Applied Mathematics, 1(2), 2010, 131–141.
[41] M. Tunç, Ç. Yıldız and A. Ekinci, On some inequalities of Simpson’s type via h-convex functions, Hacettepe Journal of Mathematics and Statistics, 42(4), 2013, 309–317.
[42] Ç. Yıldız, B. Yergoz and A. Yergoz, On new general inequalities for s-convex functions and their applications, Journal of Inequalities and Applications, 2023, Art. 11, 1–16.
DOI: 10.1186/s13660-023-02914-4
[43] M. E. Özdemir, Ç. Yıldız, A. O. Akdemir and E. Set, On some inequalities for s-convex functions and applications, Journal of Inequalities and Applications, 2013, Art. 333, 1–11.
DOI: 10.1186/1029-242X-2013-333
[44] N. Ujević, A generalization of the Pre-Grüss inequality and applications to some quadrature formulae, Journal of Inequalities in Pure and Applied Mathematics, 3(1), 2002, Art. 13, 1–20.
[45] D. Andrica and T. M. Rassias, Differential and Integral Inequalities, Springer Optimization and Its Applications, Vol. 151, 2019.
[46] E. S. Aly, A. M. Mahnashi, A. A. Zaagan, I. Ibedou, A. I. Saied and W. W. Mohammed, N-dimension for dynamic generalized inequalities of Hölder and Minkowski type on diamond alpha time scales, AIMS Mathematics, 9(4), 2024, 9329–9347.
DOI: 10.3934/math.2024454
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ugur Selamet Kırmacı

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.