A Study of Some New Ostrowski’s Type Integral Inequalities via Multi-step Linear Kernel

Authors

DOI:

https://doi.org/10.63286/jima.010

Keywords:

Ostrowski inequality, numerical integration, multi-step linear kernel

Abstract

In recent years, significant progress has been made in the study of integral inequalities, with particular emphasis on Ostrowski-type inequalities. These inequalities have found wide-ranging applications in various mathematical and scientific domains, including numerical quadrature, statistics, probability theory, transform theory, and the estimation of special functions. In this paper, we present new results under different norms by employing a novel multi-step linear kernel. Additionally, several interesting and noteworthy findings are established.

References

[1] A. Ostrowski, Über die Absolutabweichung einer differenzierbaren Funktion von ihrem Integralmittelwert, Commentarii Mathematici Helvetici, 10, 1937, 226–227.

DOI: 10.1007/BF01214290

[2] M. M. Jamei and N. Hussain, On orthogonal polynomials and quadrature rules related to the second kind of Beta distribution, Journal of Inequalities and Applications, 2013, Art. 157, 1–7.

[3] M. Maaz, M. Muawwaz, U. Ali, M. D. Faiz, E. A. Rahman, and A. Qayyum, New extension in Ostrowski's type inequalities by using 13-step linear kernel, Advances in Analysis and Applied Mathematics, 1(1), 2024, 55–67.

DOI: 10.62298/advmath.4

[4] S. S. Dragomir and T. M. Rassias, Ostrowski type inequalities and applications in numerical integration, Springer, Dordrecht, 2003.

[5] M. U. D. Junjua, A. Qayyum, A. Munir, H. Budak, M. M. Saleem, and S. S. Supadi, A study of some new Hermite–Hadamard inequalities via specific convex functions with applications, Mathematics, 12(3), 2024, 478.

DOI: 10.3390/math12030478

[6] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann–Stieltjes integrals, Advances in Computational Mathematics, 7(4), 1997, 427–434.

DOI: 10.1023/A:1018945921712

[7] G. A. Anastassiou, Fractional representation formulae and right fractional inequalities, Mathematical and Computer Modelling, 54(11–12), 2011, 3098–3115.

DOI: 10.1016/j.mcm.2011.07.036

[8] J. Guo, X. Zhu, W. Li, and H. Li, Ostrowski and Čebyšev type inequalities for interval-valued functions and applications, Plos One, 18(9), 2023, e0291349.

DOI: 10.1371/journal.pone.0291349

[9] M. A. Latif and O. B. Almutairi, Ostrowski-type inequalities for functions of two variables in Banach spaces, Mathematics, 12(17), 2024, 2748.

DOI: 10.3390/math12172748

[10] I. B. Sial, N. Patanarapeelert, M. A. Ali, H. Budak, and T. Sitthiwirattham, On some new Ostrowski–Mercer-Type inequalities for differentiable functions, Axioms, 11(3), 2022, Art. 132.

DOI: 10.3390/axioms11030132

[11] M. W. Alomari, A companion of Ostrowski's inequality with applications, Transylvanian Journal of Mathematics and Mechanics, 3(1), 2011, 9–14.

[12] M. W. Alomari, A companion of Ostrowski's inequality for mappings whose first derivatives are bounded and applications to numerical integration, Kragujevac Journal of Mathematics, 36(1), 2012, 77–82.

[13] M. Muawwaz, M. Maaz, and A. Qayyum, Ostrowski's type inequalities by using the modified 2-step linear kernel, European Journal of Mathematics and Applications, 4(6), 2024.

DOI: 10.28919/ejma.2024.4.6

[14] W. Liu, Y. Zhu, and J. Park, Some companions of perturbed Ostrowski-type inequalities based on the quadratic kernel function with three sections and applications, Journal of Inequalities and Applications, 2013, Art. 226, 1–14.

[15] M. U. Awan, M. A. Noor, and K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Applied Mathematics & Information Sciences, 12(2), 2018, 405–409.

DOI: 10.12785/amis/120215

[16] G. Rahman, M. Samraiz, K. Shah, T. Abdeljawad, and Y. Elmasry, Advancements in integral inequalities of Ostrowski type via modified Atangana–Baleanu fractional integral operator, Heliyon, 11(1), 2025, e41525.

DOI: 10.1016/j.heliyon.2024.e41525

[17] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Applied Mathematics Letters, 11, 1998, 105–109.

[18] A. M. K. Abbasi and M. Anwar, Ostrowski type inequalities for exponentially s-convex functions on time scale, AIMS Mathematics, 7(3), 2022, 4700–4710.

DOI: 10.3934/math.2022261

[19] M. Muawwaz, M. Maaz, A. Qayyum, M. Ahmad, M. D. Faiz, and A. Mehboob, Innovative Ostrowski’s type inequalities based on linear kernel and applications, Palestine Journal of Mathematics, 14(1), 2025, 802–812.

[20] U. S. Kırmacı, On some Bullen-type inequalities with the kth power for twice differentiable mappings and applications, Journal of Inequalities and Mathematical Analysis, 1(1), 2025, 47–64.

DOI: 10.63286/jima.2025.04

[21] S. S. Dragomir, Tensorial and Hadamard product inequalities for selfadjoint operators in Hilbert spaces via two Tominaga’s results, Journal of Inequalities and Mathematical Analysis, 1(1), 2025, 2–46.

DOI: 10.63286/jima.2025.03

[22] N. Azzouz and B. Benaissa, Exploring Hermite–Hadamard-type inequalities via ψ-conformable fractional integral operators, Journal of Inequalities and Mathematical Analysis, 1(1), 2025, 15–27.

DOI: 10.63286/jima.2025.02

Downloads

Published

15.08.2025

How to Cite

Ali, U., Faiz, M. D., Muawwaz, M., Shabbir, S., Zaman, A., & Qayyum, A. (2025). A Study of Some New Ostrowski’s Type Integral Inequalities via Multi-step Linear Kernel. Journal of Inequalities and Mathematical Analysis, 1(2), 97–106. https://doi.org/10.63286/jima.010

Issue

Section

Articles