Hermite-Hadamard-Fejér Type Inequalities for h-convex Functions Involving ψ-Hilfer Operators
DOI:
https://doi.org/10.63286/jima.015Keywords:
B-function, h-convex function, incomplete beta function, ψ-Hilfer operator, Hermite–Hadamard–Fejér inequalityAbstract
We use a new type of function called a B-function to create a new version of fractional Hermite–Hadamard–Fejér and trapezoid-type inequalities on the right side. To achieve this objective, we utilize h-convex functions and ψ-Hilfer operators. Furthermore, we introduce novel trapezoidal-type inequalities for specific convex classes utilizing Riemann–Liouville operators through particular instances of the principal results.
References
[1] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Computers & Mathematics with Applications, 58(9), 2009, 1869–1877.
DOI: 10.1016/j.camwa.2009.07.073
[2] C. Luo, H. Wang, and T. Du, Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications, Chaos, Solitons & Fractals, 131, 2020, 109547.
DOI: 10.1016/j.chaos.2019.109547
[3] E. Set, I. Iscan, M. Z. Sarikaya, and M. E. Özdemir, On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals, Applied Mathematics and Computation, 259, 2015, 875–881.
DOI: 10.1016/j.amc.2015.03.030
[4] M. U. D. Junjua, A. Qayyum, A. Munir, H. Budak, M. M. Saleem, and S. S. A. Supadi, A study of some new Hermite-Hadamard inequalities via specific convex functions with applications, Mathematics, 12(3), 2024, 478.
DOI: 10.3390/math12030478
[5] S. Qaisar, A. Munir, and H. Budak, Certain fractional inequalities via the Caputo Fabrizio operator, Filomat, 37(29), 2023, 10093–10106.
DOI: 10.2298/FIL2329093Q
[6] S. Qaisar, A. Munir, M. Naeema, and H. Budak, Some Caputo-Fabrizio fractional integral inequalities with applications, Filomat, 38(16), 2024, 5905–5923.
DOI: 10.2298/FIL2416905Q
[7] S. Varosanec, On h-convexity, Journal of Mathematical Analysis and Applications, 326, 2007, 303–311.
DOI: 10.1016/j.jmaa.2006.02.086
[8] D. S. Mitrinovic, J. E. Pecarić, and A. M. Fink, Classical and new inequalities in analysis, Springer, Dordrecht, 1993.
DOI: 10.1007/978-94-017-1043-5
[9] S. S. Dragomir, J. Pecaric, and L. E. Persson, Some inequalities of Hadamard type, Soochow Journal of Mathematics, 21, 1995, 335–341.
[10] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions and Hadamard-type inequalities, Journal of Mathematical Analysis and Applications, 240, 1999, 92–104.
[11] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen, Publications de l'Institut Mathématique, 23, 1978, 13–20.
[12] B. Benaissa, N. Azzouz, and H. Budak, Hermite-Hadamard type inequalities for new conditions on h-convex functions via ψ-Hilfer integral operators, Analysis and Mathematical Physics, 14, 2024, Art. 35.
DOI: 10.1007/s13324-024-00893-3
[13] B. Benaissa, N. Azzouz, and H. Budak, Weighted fractional inequalities for new conditions on h-convex functions, Boundary Value Problems, 1, 2024, Art. 76.
DOI: 10.1186/s13661-024-01889-5
[14] L. Fejér, Über die Fourierreihen, II, Mathematische und Naturwissenschaftliche Anzeiger der Ungarischen Akademie der Wissenschaften, 24, 1906, 369–390.
[15] H. Budak, On Fejér type inequalities for convex mappings utilizing fractional integrals of a function with respect to another function, Results in Mathematics, 74, 2019, Art. 29.
DOI: 10.1007/s00025-019-0960-8
[16] I. Iscan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Studia Universitatis Babes-Bolyai Mathematica, 60(3), 2015, 355–366.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bouharket Benaissa, Noureddine Azzouz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.