Some Integral Inequalities via Caputo and Liouville Fractional Integral Operators for m-convex Functions

Authors

DOI:

https://doi.org/10.63286/jima.023

Keywords:

Caputo fractional derivative, m-convex function, Hölder inequality, power-mean inequality

Abstract

The present study is comprised of two sections. Firstly, this study aims is to obtain some inequalities on Caputo fractional derivatives using elementary inequalities. Secondly, several novel inequalities are established, including Caputo fractional derivatives for m-convex functions. In this paper, upper bounds of the Caputo type for Lemma 1.8 [28] and Lemma 1.9 [29] have been obtained.

 

References

[1] M. Z. Sarıkaya, E. Set, H. Yaldız, and N. Başak, Hermite--Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57, 2013, 2403–2407.
DOI: 10.1016/j.mcm.2011.12.048

[2] S. Mubeen and G. M. Habibullah, $k$-Fractional integrals and applications, International Journal of Contemporary Mathematical Sciences, 7(2), 2012, 89–94.

[3] F. Jarad, T. Abdeljawad, and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012, Art. 142, pp. 1–8.
DOI: 10.1186/1687-1847-2012-142

[4] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 2015, 57–66.
DOI: 10.1016/j.cam.2014.10.016

[5] N. A. Zabidi, Z. A. Majid, A. Kılıçman, and Z. B. İbrahim, Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict-correct technique, Advances in Continuous and Discrete Models, 2022(1), Art. 26, pp. 1–23.
DOI: 10.1186/s13662-022-03697-6

[6] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1, 2015, 73–85.

[7] M. E. Özdemir and Ç. Yıldız, An Ostrowski type inequality for derivatives of $q$-th power of $s$-convex functions via fractional integrals, Georgian Mathematical Journal, 21(4), 2014, 491–498.
DOI: 10.1515/gmj-2014-0038

[8] İ. Işcan and S. Wu, Hermite--Hadamard type inequalities for harmonically convex functions via fractional integrals, Applied Mathematics and Computation, 238, 2014, 237–244.
DOI: 10.1016/j.amc.2014.04.020

[9] Ç. Yıldız, M. E. Özdemir, and H. K. Önalan, Fractional integral inequalities for different functions, New Trends in Mathematical Sciences, 2, 2015, 110–117.

[10] M. Z. Sarıkaya and H. Yıldırım, On Hermite--Hadamard type inequalities for Riemann--Liouville fractional integrals, Miskolc Mathematical Notes, 17(2), 2016, 1049–1059.
DOI: 10.18514/MMN.2017.1197

[11] M. A. Khan, Y.--M. Chu, A. Kashuri, R. Liko, and G. Ali, Conformable fractional integrals versions of Hermite--Hadamard inequalities and their generalizations, Journal of Function Spaces, 2018, Art. 6928130, pp. 1–9.
DOI: 10.1155/2018/6928130

[12] E. C. Grigoletto and E. C. de Oliveira, Fractional versions of the fundamental theorem of calculus, Applied Mathematics, 4, 2013, 23–33.

[13] G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, 1984, 329–338.

[14] M. K. Bakula, M. E. Özdemir, and J. Pečarić, Hadamard type inequalities for $m$-convex and $(alpha,m)$-convex functions, Journal of Inequalities in Pure and Applied Mathematics, 9(4), 2008, Art. 96, pp. 1–25.

[15] S. S. Dragomir, On some new inequalities of Hermite--Hadamard type for $m$-convex functions, Tamkang Journal of Mathematics, 33(1), 2002, 1–11.

[16] M. K. Bakula, J. Pečarić, and M. Ribicić, Companion inequalities to Jensen's inequality for $m$-convex and $(alpha,m)$-convex functions, Journal of Inequalities in Pure and Applied Mathematics, 7(5), 2006, Art. 194, pp. 1–15.

[17] S. S. Dragomir and G. Toader, Some inequalities for $m$-convex functions, Studia Universitatis Babeş--Bolyai Mathematica, 38(1), 1993, 21–28.

[18] M. E. Özdemir, E. Set, and M. Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated $m$-convex and $(alpha,m)$-convex functions, Hacettepe Journal of Mathematics and Statistics, 40, 2011, 219–229.

[19] I. A. Baloch and İ. Işcan, Some Hermite--Hadamard type integral inequalities for harmonically $(p,(s,m))$-convex functions, Journal of Inequalities and Special Functions, 8(4), 2017, 65–84.

[20] T. Lara, N. Merentes, R. Quintero, and E. Rosales, On strongly $m$-convex functions, Mathematica Aeterna, 5(3), 2015, 521–535.

[21] M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent. Part II, Geophysical Journal International, 13(5), 1967, 529–539.
DOI: 10.1111/j.1365-246X.1967.tb02303.x

[22] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science Inc., Amsterdam–New York, 2006.

[23] S. Faisal, M. A. Khan, T. U. Khan, T. Saeed, and Z. M. M. Sayed, Unifications of continuous and discrete fractional inequalities of the Hermite--Hadamard--Jensen--Mercer type via majorization, Journal of Function Spaces, 2022, Art. 964087, pp. 1–24.
DOI: 10.1155/2022/6964087

[24] S. Zhao, S. I. Butt, W. Nazeer, J. Nasir, M. Umar, and Y. Liu, Some Hermite--Jensen--Mercer type inequalities for $k$-Caputo fractional derivatives and related results, Advances in Difference Equations, 2020, Art. 262, pp. 1–17.
DOI: 10.1186/s13662-020-02693-y

[25] S. M. Kang, G. Farid, W. Nazeer, and S. Naqvi, A version of the Hadamard inequality for Caputo fractional derivatives and related results, Journal of Computational Analysis and Applications, 26(1), 2019, 962–972.

[26] J. Zhao, S. I. Butt, J. Nasir, Z. Wang, and I. Tlili, Hermite--Jensen--Mercer type inequalities for Caputo fractional derivatives, Journal of Function Spaces, 2020, Art. 7061549, pp. 1–11.
DOI: 10.1155/2020/7061549

[27] M. A. Khan and S. Faisal, Derivation of conticrete Hermite--Hadamard--Jensen--Mercer inequalities through $k$-Caputo fractional derivatives and majorization, Filomat, 38(10), 2024, 3389–3413.
DOI: 10.2298/FIL2410389K

[28] G. Farid, A. Javed, and S. Naqvi, Hadamard and Fejér--Hadamard inequalities and related results via Caputo fractional derivatives, Bulletin of Mathematical Analysis and Applications, 9, 2017, 16–30.

[29] M. E. Özdemir, S. I. Butt, A. Ekinci, and M. Nadem, Several new integral inequalities via Caputo fractional integral operators, Filomat, 37(6), 2023, 1843–1854.
DOI: 10.2298/FIL2306843E

Downloads

Published

16.12.2025

How to Cite

Özdemir, M. E., & Yıldız, Çetin. (2025). Some Integral Inequalities via Caputo and Liouville Fractional Integral Operators for m-convex Functions. Journal of Inequalities and Mathematical Analysis, 1(3), 158–166. https://doi.org/10.63286/jima.023

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.