Nontangential Limits and Nontangetial Boundedness for Solutions of Hermite Type Equations
DOI:
https://doi.org/10.63286/jima.035Keywords:
Calderon theorem, Poisson integral, Hermite operator, Ornstein-Uhlenbeck operator, perturbed laplacianAbstract
Nontangential convergence on the boundary is studied for L-harmonic functions defined on the upper half-space, where L is either a slightly more general operator than the Hermite operator or is a perturbation of the classical Laplacian. In addition, the Poisson kernel and the Poisson integral associated with L are analyzed in detail and several properties of independent interest are presented.
References
[1] A. P. Calderón, On the Behaviour of Harmonic Functions at the Boundary, Transactions of the American Mathematical Society, 68(1), 1950, 47–54.
DOI: 10.2307/1990537
[2] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 32, 1971.
DOI: 10.2307/j.ctt1bpm9w6
[3] L. Carleson, On the existence of boundary values for harmonic functions in several variables, Arkiv för Matematik, 4(5), 1962, 393–399.
DOI: 10.1007/BF02591620
[4] G. Flores and B. Viviani, A Calderón theorem for the Poisson semigroups associated with the Ornstein–Uhlenbeck and Hermite operators, Mathematische Annalen, 386, 2023, 329–342.
DOI: 10.1007/s00208-022-02538-7
[5] L. Forzani and W. Urbina, Poisson–Hermite representation of solutions of the equation $partial_t^2 u + Delta_x u - 2x cdot nabla_x u = 0$, in: M. Lassonde (ed.), Approximation, Optimization and Mathematical Economics, Physica, Heidelberg, 2001, 109–115.
DOI: 10.1007/978-3-642-57592-1_9
[6] L. Liu and P. Sjögren, A characterization of the Gaussian Lipschitz space and sharp estimates for the Ornstein–Uhlenbeck Poisson kernel, Revista Matemática Iberoamericana, 32, 2016, 1189–1210.
DOI: 10.4171/RMI/912
[7] E. Pineda and W. Urbina, Non tangential convergence for the Ornstein–Uhlenbeck semigroup, Divulgaciones Matemáticas, 16(1), 2008, 107–124.
[8] P. Sjögren and J. L. Torrea, On the boundary convergence of solutions to the Hermite–Schrödinger equation, Colloquium Mathematicum, 118, 2010, 161–174.
DOI: 10.4064/cm118-1-8
[9] G. Garrigós, S. Hartzstein, T. Signes, J. L. Torrea, and B. Viviani, Pointwise convergence to initial data of heat and Laplace equations, Transactions of the American Mathematical Society, 368, 2016, 6575–6600.
DOI: 10.1090/tran/6554
[10] S. Thangavelu, Lecture Notes on Hermite and Laguerre Expansions, Princeton University Press, Princeton, NJ, 1993.
[11] W. Urbina-Romero, Gaussian Harmonic Analysis, Springer Monographs in Mathematics, Springer, Cham, 2019.
DOI: 10.1007/978-3-030-05597-4
[12] G. Garrigós, A weak 2-weight problem for the Poisson–Hermite semigroup, in: Advanced Courses of Mathematical Analysis VI, World Scientific, Hackensack, NJ, 2017, 153–171.
[13] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Annals of Mathematical Studies, 63, Princeton University Press, Princeton, NJ, 1970.
[14] G. Flores, G. Garrigós, and B. Viviani, Lebesgue points of measures and non-tangential convergence of Poisson–Hermite integrals, Journal of Evolution Equations, 25, 2025, Art. 50, pp. 1–18.
DOI: 10.1007/s00028-025-01079-5
[15] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, Basel, 2009.
DOI: 10.1007/978-3-7643-9982-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Guillermo Javier Flores

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.