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Abstract

This study presents novel Hermite—Hadamard inequalities for convex functions using y-conformable fractional integral operators. These
operators are extensions of several significant fractional operators, including the Riemann-Liouville and Hadamard operators. Furthermore, we
present generalized midpoint- and trapezoidal-type inequalities for these fractional integrals, which are extensions of previous studies.
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1. Introduction

Convex function analysis is a deep generalization model for many applications that starts with real-valued func-
tions of a real variable. Convexity theory offers a cohesive framework for creating extremely efficient and robust
numerical tools to address issues across many mathematical fields. Various intriguing generalizations and exten-
sions of multiple forms of convexity have been utilized in optimization and mathematical inequalities, especially
Hermite—Hadamard-type inequalities, as referenced in [7]-[4]. In [2], the authors proved the following generalized
Hermite—Hadamard-type inequalities.

Let v : [a,b] — R be a monotone increasing function such that the derivative y’ > 0 is continuous on (a,b) and f > 0.
If g is a convex function on [a,b], then

8 (a;b) < rz(f;(‘ll)) [wy(‘f%h)fG(a) + "’f(ﬁ%,,ﬁG(b)} < W ’ (.1

where

Vo) = gy [ VO [w —v] ) an
v s) =g [ VO [wio -] ) a
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and
G(s) =g(s) +g(atb—s),

Ay(1) = <w(b) —w<a;b>>ﬁ+ (w(a;b) —w(a))ﬁ.

If || is a convex mapping on [a,b], then the generalized trapezoid-type inequality is given as [2, Theorem 4.4].

gla)+g(b) T(B+1) Ty ,p a B
2 240 "7y Gl WW)*G(Z’)H

—a 1
< aay 0y U@ +Z O] [ (ay(1) - ay(s)ds

Ay(s) = (q/(b) —w<;a+ 2;%))/3 4 <w<2;sa+;b> —l//(a))B.

The generalized midpoint-type inequality is formatted as follows [2, Theorem 3.4]:

2w [y 00+ Yy 0]~ (7))

2A‘V(1) (u+b) (a+h 2

where

< i @I+ 6] [ Aas

In the recent paper [1], the authors introduced a new operator called generalized y-conformable fractional integrals,
which are defined as follows:

Definition 1.1. Let 0 < a < b < oo, f: [a,b] C [0,+°) — R be a continuous function and v : [a,b] — R be a
monotone increasing function such that the derivative y’ > 0 is continuous on (a,b). The generalized left and right
y-conformable fractional integral operators of the function f, with order > 0, are defined as

B-1
Yot = gy [ v [P ) aye, (12)
" 'y G
) /v/ YRV pe) dyr, (13)
where "
RNI0)

The results are already known for the special choices of v, a and f3.

By setting o = 1, the operators simplify to the y-Hilfer integral operators of order 8 > 0.

For y(t) = t, the Katugompola operators of order > 0 and parameter & > 0 are obtained.

When y(7) =t, o = 1, the operators are reduced to Riemann-Liouville integral operators.

By selecting w(t) =1, & = 1, and B = 1, the operators are reduced to classical Riemann integrals.

The o-Hadamard operators of order B > 0 are obtained by setting y(¢) = In(¢) and a > 1. These operators are
denoted in (1.4) and (1.5).

6. By defining y(z) =In(7), @ = 1, and a > 1, we obtain Hadamard operators of order > 0.

ke
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Definition 1.2. Let 1 <a <b < oo, f: [a,b] C [0,+e) — R be a continuous function. The left and right @-Hadamard
integral operators with order 8 > 0, are defined as

o 1 rn®(x) —In*(t)1h-1f(¢) dt

‘%Zlif(x) = T(B) /a [ a } P lnl—a(t)’ (1.4)
and

o 1 b)) —In*(x)1B-1f(¢r) dt

jf;ff(x):r(ﬁ)/x Ll mEInE (1.5)

The objective of this study is to generalize the Hermite-Hadamard inequalities previously established using -
conformable fractional integral operators.
2. Hermite-Hadamard inequalities

This is the first result about Hermite—Hadamard-type inequalities for convex functions with general y-conformable
fractional integral operators.

Theorem 2.1. Let 0 <a<b <oo, a,f > 0and g: [0,00) — R be a continuous convex function, ¥ a positive differ-
entiable increasing function. Then the following inequalities hold:

g(d;b) < ;g?;g) [y;ﬁlf@)ﬁ(a) + nglf#ﬁg(b)} < g(");g(b)’ @1
where
G(t) =g(t) +gla+b—t), 2.2)
and , ,
Qy.a) <w“(b> —;ﬂf”("é”)) N <w°‘ (“*J’zx— wa(a)> | .

then

2g<“+b> <G(1). (2.4)

- I a0
Multiplying (2.4) with | ————~= v () y* ' (r) and integrating over ¢ € [32,b], we deduce

28 (a;b> /; (M)ﬁ_l v (1) w (1) dr

<[ vo ("’“”‘"’”)B G (1) v (1) dr

(04

This results in

o o (a B
g<a+b> (w 0=y (3”)) <TBHDw s G, 2.5)
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a(s) _ 4,0 B-1
Now, multiplying (2.4) by (W) l[// (t) w*~ () and integrating over ¢ € [a, a+b] gives
atb\ (5 (v -y @\ e
26(57) [ () vovena
a (04
atb o o B-1
2 t)— a / _
S/ (‘l’()allf ()) l[/(l‘)l//a 1(2‘)G(l‘)dl‘,
and consequently
B
atb\ (wH(*E?) - y*(a) LB+ y 8
2.6
g( > ) ( p < 7 %;yl(#)fG(a) ) (2.6)
The addition of (2.5) and (2.6) results in
a+b r(gp+1) v B v B
< a ar . .
g( 2 ) < T0oy) 55 0@ + Ll 0 0)] @7

To demonstrate the second inequality in (2.1), we need to put = (1 —s)a+ sb in (2.2) and use the fact that g is
convex to get

G(r) < g(a)+g(b). (2.8)
Use the identical procedure as previously on (2.8), resulting in
T(B+1) [y v B g(a)+g(b)
N~ N (@ g (@ 2 < - < . .
ZQ(OC,I;/) [KJI(#)fG(a) + KQQ-‘I(%I’)JrG(b)} = 2 (2.9)

At long last, the necessary result is obtained by integrating the inequality (2.7) with (2.9).

Remark 2.2. Theorem 2.1 in [2] is established by setting & = 1 in Theorem 2.1.

Corollary 2.3. With the hypothesis of Theorem 2.1, depending on the choice of the function y, we obtain the following
results:

1. Taking y(s) = s, the following new result is obtained.

a+b T(B+1) 14 8 « B g(a)+g(b)
< < .
g( 2 )— 30100 |y 0@+ 5 0 0)] < B2 10
where g 5
- (45)\" ()" —a"
O (a) = (a + — |- (2.11)
Setting o =1 in (2.10), we obtain the inequalities (3) in [8].
2. Choose y(s) = Ins, we obtain the new result shown below.
a+b T(B+1) (4 .8 & B g(a)+g(b)
g< : ) < St b, @)+l G| < SUTERL 2.12)
where g 5
In%(b) —In* (432 In* (442) —In*
Qz(a)=<n()an(2)> +(n(221 n(a)>. (2.13)

Using o = 1in (2.12), we obtain Corollary 2.3 [2].
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3. Trapezoid Type Inequalities

In this part, we show the special outcomes of some trapezoidal-type inequalities that are found using fractional
integral operators that are y-conformable. In order to accomplish this, we first establish equality in the subsequent
lemma.

Lemma 3.1. Let g : [a,b] — R be a differentiable mapping on (a,b) and &, B,y are defined as in Theorem 2.1. Then
the following identity holds:

gla)+gd) TB+1) [y OV P
[cgyl(m>G( )+%§I(a+b)+G(b):|

2 _2Q(W,(X) 2 2
(3.1
_ b—a ! s 2—s (2—s s
_40(111,06)/0 (Q(y,0) —Ay a(s)) [g (2a+ 5 b) —g ( 5—at 2b>]ds,
where Q(y, Q) is defined as in (2.3) and
B B
a(py —w (s bb o (2=s Sp) — w®
Aya(s) = (W (b) —y (2a—i— 3 )) _|_<‘// (2 a+t; ) 14 (a)) . (3.2)
o o
Proof. Let
B
b alp) — wo(atl Al _ 4yl B
PR <w (b) — v (4 )) _<w(b)u/(t)> &t 33)
b—aJsp o o
by employing integration by parts on (3.3) and utilizing (2.2), we obtain
a B b
b—a, _ (w%b)—wgb)) (w“(b)—w%))ﬁ G
= - (YN 6
2 « « atb
R
EOEAON
[ (PO 060y
BN
therefore 5
b— a(p) — yo a+b
@y — (VO VDN Gy rg+ 1) Y G, (3.4)
2 o (%)
Similarly, let
2t (v v @)\ v - @)
b= / 2 - () G'(t)dt, (3.5)
b—aJa o o
Through integration by parts (3.5), we arrive at
B
b— a(atby _ 4,
P (G e ) Gla)+T(B+1) Y 1P Gla). (3.6)
2 o (")
Given that G(a) = G(b) = g(a) + g(b), we can deduce the following from (3.4) and (3.6):
b—a
2 (‘]1 _Jz) -
Q) (s(a) +2(6) ~T(B+1) £ 51F, 0 Gla)+ Yl GO0
2 2
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thus

gla)+g(b) T(B+1) [y v b
2 20 (v, a) [cml(@b)G( )+(g,cf~l<a§b)+G(b)] 100v.a) (J1 = ).

Conversely, since G'(1) = ¢'(t) — g'(a+ b —1t), we derive from (3.3)

L= 2 /” <W“(b)—w“(“§”)>ﬁ_<l,,a(b)_w(,)>ﬁ

b—a e« a a

< (g/(1) — g (a+b—1))dr,

By changing the variable t = Sa + %b, we can achieve the following:

i [](reven) (oY
' 0

o

Similarly, we get from (3.5)

= K‘”“WL"’“(@)ﬁ(W)ﬁ]

x(g'(t)—g'(a+b—t))dt,

by changing the variable t = %a + 3b, we get

e [ <wa<a+b>—w“<a>>ﬁ_(w<22—sa+;b>—wa<a>>
= o a o

Consequently

! s 2-—s 2—s s
—Jh = QO —A "= —g = .
1= /0 (Q(y,a) —Aya(s)) [g <2a—|— 3 b> g < 3 a—|—2b>]ds
Replacing (3.8) in (3.7), we get the desired equality (3.1).
Remark 3.2. Specialized cases are available below.

1. Put a =1, we get Lemma 4.1 in [2].
2. Put y(r) = r, we have the following identity for Katugompola fractional integrals [5]

gla)+g(b) T(B+1)
2 201 (OC)

s (o) OO+, (BWVG(”)} -

x/ol (Q1(a) —A1a(s)) [g' (;a+ 2;%) Y (2;sa+;b>} ds,

3.7

(3.8)
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where () () is defined by (2.11) and

o s s\ B —s PN ar\ B
= (P2 (o)’

3. The following identity for o-Hadamard type-fractional integrals is obtained by setting y/(7) = Int.

g(a)—l—g(b)_r(ﬁ—i—l) a P 4o B _ b—a
S0 TR e Gyl 6]

X /01 (a(@) — Az (s)) [g/ (;(H— 22Sb> —g (22sa+ ;bﬂ ds,

where (), (@) is defined by (2.13) and

N B _ B
In%b—1n%* (La+ 32b In% (22a+ £b) — In%a
Az,a(s) — ( (2 2 )> +< ( 2 2 ) )

(04 (04

3.9

(3.10)

Theorem 3.3. Assume that o, B,y are defined as in Lemma 3.1. If |g'| is a convex mapping on |a,b], then the

trapezoid-type inequality is obtained as

8(0)42‘8(5) _;(()5(;’2) [‘I’ P Gla)+ Y, 1P +G(b)} ‘

= m g/ (@) +1g'(o)]] /01 Q(y, &) — Ayals)|ds.

Proof. Using the absolute value of identity (3.1) and the convexity of |g'|, we deduce

gla)+g(d) TB+1) [y 5 v B
St [P e S ”W’(a#)*G(”)H

< 4Q 0z / ’Q y.a Aw,a(s)’

o) ek (e )

< 40]9(_1//?05)/0 1O (. a) —Ayals)|

x Dg’(aﬂ

L5 0) + 222 ¢/ ()] + “‘\g%b)@ ds

orar [ @I+ O] [ 1000 ~Aga(s)lds

Remark 3.4. By assigning & = 1 in Theorem 3.3, we derive Theorem 4.4 in [2].

@3.11)

Based on the hypothesis of Theorem 3.3 and the selection of the function v, it yields the following Corollary 3.5.
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Corollary 3.5. 1. Taking y(s) = s, we get

g(a) +(b) F(B+1>[Wﬁ+ Ga)+ *.7° +G(b)H

2 204(0) (52) (%) a1
b— , 1
< 30y [E @I HE O] [ [01(e) ~A1a(s)ds
By setting oo =1 in (3.12), we derive Remark 4.5 [2].
2. By choosing y(s) = Ins, we derive
gla)+g(b) T(B+1) [(x p o b ]
— H G H b

T 20p(a) | ey COF gy OO .

b—a
< m[’g a)l+1g (b / | () — Az als)|ds.

Setting o =1 in (3.13) yields Corollary 4.6 [2].

Theorem 3.6. Let p > 1, é + % = 1 and assume that o, B, y are defined as in Lemma 3.1. If |¢'|P is a convex mapping
on |a,b|, then the following trapezoid type inequalities hold.

gla)+g(b) T(B+1)
2 20(y,a)

;i,ﬂf%) Gla)+¥ 10, +G<b>H

< oo ([ l00wa) —Aw,a<s>\qu);

| (lg’<a>|"+43|g'<b>v> P <3rg/<a>|f’: \g’(bw)i}

(3.14)

_zl(é)(y/a)['g( N+1g' (b </]Q v,a A""“(swds);'

Proof. According to Lemma 3.1 and utilizing the absolute value, we obtain

gla)+g(b) T(B+1) [w .
2 20(y.a) [“7(+42)

b—a 1
< 3t0pa) b [2F @) ~Avals)

e Tae 0y @)~ Ayals)
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Holder’s inequality gives

gla)+gd) T(B+1)
2 20(v.q) [Z f%) Gla) + 51 +G(b)H

<o ([ 1ovr-avaora) (]
40 v.a (/ 1Q(y, ) —Ayals) ‘qu (/01

Since |g'|? is a convex function, we get

g(a);g( ) zé)lz;/r,l)) [Bé’,ylfc(aw) +<‘§ylf+G<aJ2rb>} ‘

2

~|—

1
PN\ »

+4(§(1[/f106) (/Ol\ﬂ(w,a)—Aw,a(S)!quy 3’8'(0) 4

This accomplishes the first inequality in 3.14. For the second inequality, notice that for A,B > 0, p > 1, we have
AP+ BP < (A+B)P, and 1 +37 < 4.

Then

g(a) ;g(b) ~ ;él[i;fr;)) [;jlf_G <“J2rb> YA G (a;bﬂ |

1

¢ 1
it ([ v saa) o

which yields to the second inequality in (3.14).

g’(b)D,

g’(a)( +

4. Midpoint Type Inequalities

This section formulates a midpoint-type inequality concerning y-conformable fractional integral operators, uti-
lizing the identity provided in the following Lemma.

Lemma 4.1. Under the hypothesis of Lemma 3.1, the following identity holds

a0ty | /() 00+ ol 0] - (57

b—a ! (S 2—s (2—5s s
= sty v [¢ Gat 2370) o (O3 ak 3o) s

4.1
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Proof. Let

~b—aJap o

K, 2 /b <M>ﬁG’(t)dt, 4.2)

By applying integration by parts on (4.2) and using (2.2), we are able to derive

_ (] _ s B b A1) _ 40 B-1
bt = (PO gl g [ (OOY gy
2 o wsh ath o
thus 5
b—a, [ y*b)—y* () atb v B
> Kl——2< 2 g< 3 >+F([3+l)%yl(%b)+G(b). 4.3)
Similarly, let
_ 2 v —v@),
Kz—b_a/a <a G'(t)dt. (4.4)
Integrating by parts gets
B
b—a v (44L) — y*(a) a+b
. K2:2< (zzx ) g( : >_r(3+1)%"{,91€%c;(a). 4.5)
The sum of (4.3) and (4.5) produces
_bma e gy KB [y s v b L (atd
10(y.a) (Ki Kz)_ZQ(I//,Ot) [(ml(a#)G(a)ﬁml(w)ﬁ(b) ¢l ) (4.6)

Also, we observe from (4.2) and (2.2) that

(1) _ 4y B
K, 2 /b <1V (b) 14 (t)) [g/(t)—g’(a—i—b—t)]dt

b—ala o

B
1 a(p) — wo(L 2—sb _ _ +
/o <W . llla(za : )> [g/<;“ 12Sb>—8/<2zsa lzsbﬂds’

as well, by (4.4) and (2.2), we have
_ B
1 a(l=s I+sp) _ 40 ( ath
v (Fa+ F2b) — y*(452) ,(2—s s (s 2—s
K = S\ S '
2/0< p g 2a+2b g2a+2b ds

1 s 1—s 2—s 1+s
Ki—-K,= | A (= g , 4.
1—K; /0 va(s) {g <2a+ 5 b) g( Sat— b)]ds 4.7

The desired equality (4.1) is obtained by replacing (4.7) in (4.6).

Hence

Remark 4.2. Here are several case studies of specific situations.

1. Setting ¢ = 1, we get Lemma 3.1 in [2].
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2. Put y(t) =, we have the following identity for Katugompola fractional operators

St |y 0@+ 7 00 s (57

b—a [! (s 2—s ,(2—s s
_401(a)/0A1’“(s) [g (§“+ 2 b)_g( 2 a+2b>}ds'

For a = 1, we deduce remark 3.2 [2].
3. The following identity for ot-Hadamard fractional operators is obtained by setting y () = Inz.

gty 2ty o] <(22)

b—a 1 s 2—5s 2—5 s
= — A "= b)—¢ —b .
402(04)/0 2.a(5) [g (2“+ 2 ) g( ) )}ds

For o« = 1, we deduce Corollary 3.3 [2].

Theorem 4.3. Assume that o, 3, y are defined as in Lemma 3.1. If |g'| is a convex mapping on [a,b), the midpoint-type
inequality is obtained as

TE+1) [}’;yléjm ~G(a) + %ﬂylfwb)*G(b)} —8 (a;b> ‘

2Q(y,a) “t) o0
(4.8)
b—a ! / /
< oo ([ Avatoas) [i¢ @)+ ¢ 0]
Proof. Using the absolute value of identity (4.1) and the convexity of |g’| function, we have
TB+1) [y v B ~ <a+b>
20(y, a) [%QI(JE)G( )+ %?I(%)+G(b) 8 )
b—a ! 2—s s
< saapea y a0 |J¢ (G 230) [ g (3570 5o ) |
b— ! / 2— / 2— / /
< ooy} Ava® [l @1+ 2Tl O+ 23 g @]+ 51 0| a
b—a 1 , ,
= et ([ Avatoas) i@+ g 0]
O

Remark 4.4. Setting oc = 1 in Theorem 4.3, we obtain Theorem 3.4 in [2].
Based on the hypothesis of Theorem 4.3 and the selection of the function vy, it yields the next Corollary 4.5.

Corollary 4.5. 1. Taking y(s) = s, we get

S [ty 00+ o] ()

2

< oot ([ Arao)s) [l @1+ ¢ 0]

By setting o0 = 1, we derive Remark 3.5 [2].
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2. Choose y(s) = Ins. So, we get a novel result with o.-Hadamard operators.

)

202(06) (#) 2

< oot ([ 22atas) [1¢ @l + 1 o))

Setting o =1 in (4.9) yields Corollary 3.6 [2].

Theorem 4.6. Let p > 1 and assume that o, 3,y are defined as in Lemma 3.1. If |¢'|P is a convex mapping on [a, D),
then the following midpoint-type inequality is obtained.

(i) | F sy OO+ Erlly 00 - g<;b>|

4.9)

Q=

4 4

[<|g'<a>v+3\g'<b>p)%+<3rg’<a>|f’+\g'<b>rﬂ>i} (4.10)

s (4 [ Avats ds> [18a) +1g/ )]

Proof. By Lemma 4.1, using the absolute value, Holder’s inequality and convexity of |g’|?, we deduce

C(B+1) [%’iyl"m -G(@) +F5 Ol )} ¢ <;b) ‘

20(y.a) [77 () (252
( b) ds)

< st ([ avatrw) ([
</></ () [a)
‘P

s (o) (2

1
b—a ! a 3‘g +]g
“saya  Awels)

For the second inequality, use once again A” + B? < (A+ B)” and 1+ 3 < 4 for p > 1, thus

r(B+1) B B B a+b
20(v.a) [%%f’(;) Gla ”W’(z)*“”] g( 2 >

1
b—a 1 g 1-1
< P
< 100y.a) (/0 Al,,’a(s)ds> 47 x (

1,1 _
where;—klg—l.

=

of

¢ +|g®)]).
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which yields to the second inequality in (4.10). O
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